
Parallel izing the Closure Computat ion in
A u t o m a t e d Deduct ion

John K. Slaney
Automated Reasoning Project
Australian National University

jks@arp.anu.oz.au

Ewing L. Lusk *
Mathematics and Computer Science Division

Argonne National Laboratory
lusk@mcs.anl.gov

Abstract

In this paper we present a parallel algorithm for computing the closure of a set under
an operation. This particular type of computation appears in a variety of disguises, and
has been used in automated theorem proving, abstract algebra, and formal logic. The
algorithm we give here is particularly suited for shared-memory parallel computers, where
it makes possible economies of space. Implementations of the algorithm in two application
contexts are described and experimental results given.

1 Introduct ion

There are many contexts in which one wants to compute the closure of a set of objects
under an operation. In resolution-based theorem proving, for example, the search for a
proof of unsatisfiability for a set of clauses may be viewed as a computation of the closure
of the original set of clauses under a resolution operation, where one terminates the com-
putation once the closure has been found to contain the null clause. The Knuth-Bendix
completion procedure is a closure computation in which the operation is a restricted form
of paramodulation followed by demodulation, and one may not know in advance whether
the computation will complete. The closure computation is also strongly related to the

*This work was supported by the Applied Mathematical Sciences subprogram of the Office of Energy
Research, U.S. Department of Energy, under contract W-31-109-Eng-38.

29

computation of least fixed points. Details of these and other occurrences of the closure
computation paradigm are given in Section 2 below.

Algorithms for carrying out this computation at first glance appear serial, because
the results of earlier computations are used in later ones. A small amount of reflection
reveals substantial parallelism in the computation of new elements, however, except in
pathological cases. Further study reveals a serialization bottleneck in the subsumption
phase of the algorithm. The main point of this paper is~the presentation of a parallel
algorithm for the closure computation that avoids this bottleneck in a way different from
other attempts to solve this problem. In Section 3 we describe the new algorithm, prove
its correctness, and describe how it differs from other algorithms designed to attack the
same problem. Finally, in Section 4 we describe the implementation of this algorithm
in two different programs to carry out computations in formal logic. We give results
demonstrating that significant speedups can be achieved. Finally, we describe directions
for future exploitation of the algorithm in other contexts.

2 The Closure Computat ion and its Significance

The closure operation is a fundamental one. Suppose we are given a set T and an operation
f : T x T . . . x T --~ T. Then if S is a subset of T, we define the closure CI(S, f) as:

CI(S,f)=('~{ R [S C R a n d f (R x R . . . x R) c R }

In other words, the closure of S is the smallest subset of T that contains S and everything
in T that can be obtained from S by repeatedly applying the operation f . Depending on
the choice of T, S, and f , computing Ct(S, f) is equivalent to a variety of computations
which on the surface appear to be quite different. We give here several examples.

2 .1 U n s a t i s f i a b i l i t y o f a S e t o f Clauses

One of the most familiar applications is that of proving a set of clauses unsatisfiable. In
this case T is the set of all clauses, S is the set we wish to show unsatisfiable, and f is
an inference rule such as binary resolution or paramodulation. (Hyperresolution gives an
example in which the arity of f is greater than two.)

In this case, CI(S, f) is quite likely to be infinite, and so one expects to terminate the
computation as soon as the empty clause [] is found to be a member of CI(S, f). It is the
potentially infinite size of CI(S, f) that makes resolution only a semi-decision procedure
for first-order logic. Whether or not CI(S, f) is finite, it represents the set of all clauses
deducible from S under the inference rules being used.

30

2.2 The Knuth-Bendix Complet ion Procedure

The computation of a complete set of rewrite rules is similar, except in this case the
computation will not terminate if the closure being computed does not turn out to be
finite. One starts with an initial set S of rewrite rules, and tries to find a set P of rewrite
rules containing S and having the unique termination property. Knuth and Bendix showed
that P = CI(S, f) , where f is defined as paramodulation between left sides of rewrite rules,
followed by rewriting of the resulting paramodulant. (To compute a practical complete set,
one also applies back subsumption and back demodulation to the set being constructed,
so that the set being computed is not exactly a closure of S, since it does not contain S
itself. This aspect of the "closure" computation will be treated in a later paper.)

2.3 Computing the Size of Certain Finite Free Semigroups

Algebraic objects are frequently defined in terms of generators, operations, and relations.
It may be obvious that the resulting object is finite, but there may be no clue to its size,
even in the case of a free object (no relations). In this case the object is exactly the
closure of the set of generators under the operation, and so the closure computation can
be used to compute the size of the free object.

The fact that this is a closure computation means that a theorem prover can be used
to carry it out. This is exactly what was done in [6] to discover the size of the semigroup
F2B2. It has been used since then to discover the sizes of F3B2, F2B21, and F3B21.
All of these were new results. The computation of F3B21 was done on a parallel machine
because it had the required 120M of memory. Parallelism was not exploited; the run took
more than seven hours on a Sequent Symmetry.

2.4 Computat ion of Ackerman Constants

One case in which it was not obvious whether a particular freely generated algebra was
finite or infinite was that of the free De Morgan monoid generated by the monoid identity.
De Morgan monoids are the natural algebraic counterparts of the system R of relevant
logic (see [3] for a definition and explanation). An important step towards understand-
ing constant De Morgan monoids--i.e, those generated from the identity alone--was the
computation of the subdirect products thus generated of certain sets of small constant
algebras. As reported in [9] and [11], one of these was eventually discovered to be char-
acteristic and to have 3088 elements. The closure computation used to discover this was
painfully slow in its serial form but parallelizes well by our method as shown below.

2.5 Formulas of E__,

Another, related, closure problem arising in the theory of relevant logic is that of deter-
mining the structure of the one-variable fragment of the sentential logic E_~ of Anderson

3t

and Belnap. It is known that with negation as well as implication infinitely many non-
equivalent formulae can be defined in E, but very little is known about the pure implica-
tion fragment. A recent computational result is that the direct product of all 4-element
E_~ algebras can distinguish 7516 such formulae. In Section 4 we present speedup results
for the parallelization of this computation.

3 Algor i thms for the Closure Computat ion

3.1 The Sequent ia l A lgor i thm

Here we describe a straightforward, efficient algorithm for computing the closure. It has
been used in countless theorem provers.

Let S = {x l , . . . , xk} be a finite subset o f a s e t T. Let f : T x . . . × T ~ T b e a n
n-ary operation on T. The algorithm shown in Figure 1 makes use of a list L and two
indices into L, p and q. We say that an element x of T is new if it is not subsumed by an
element of L.

Initialize L[i] ~ xl, for i = 1 , . . . , k
Initialize p ~-- 1, q ~-- k + 1
While p < q do

Foreach (i l , . . . , in) such that Vj, ij < p and 3j, ij = p
Compute f(L[il], . . . , L[i,])
If f(L[ix],..., L[i~]) is new then

L[q] ~ f(L[il], . . . , L[i=])
q~---q+l

end if
end for
p e - - p + l

end while

(generate phase)
(subsumption phase)
(update phase)

Figure 1: Sequential Closure Algorithm

There are several observations to be made about this algorithm:

The pointer p chases the pointer q; the computation completes when it catches up.
There is no guarantee that it will do so. This is not a severe drawback in most
situations, since either 1) the closure is known in advance to be finite, or 2) one is
looking for a particular element of the closure, and so will abort the search when it
is found.

If the algorithm does terminate, then at completion L is an ordering of CI(S, f).
By induction on the number of times through the "While" loop, the generate phase
can only compute elements of CI(S, f), and as long as L is not all of CI(S, f) , the

32

computation will continue, since all tuples of elements of L are eventually considered
in the "Foreach" statement. Finally, the subsumption phase ensures that L contains
no duplicates.

The restriction in the "Foreach" condition ensures that each tuple will only be con-
sidered once. This is critical for efficiency, since it prevents redundant calculations.
Each time through the main loop, we consider only those elements of L up to and
including the pth one, not all of the ones we have produced.

Anyone reading this as a theorem-proving algorithm would ask about back sub-
sumption and back demodulation, which use new elements of L to modify or delete
existing ones. Note that these operations are not admissible here by our definition
of closure.

3.2 V a r i a t i o n s on t h e S e q u e n t i a l A l g o r i t h m

We take this opportunity to make some observations about the closure algorithm as it
stands. These observations will also be true of the parallel version.

The set-of-support strategy In the context of theorem proving, it represents an
implementation of the set-of-support strategy[12] used in various Argonne theorem provers
over the years. In many cases it is possible to initialize with the pointer p set to an index
greater than 1. This is typically done when one knows that S is an unsatisfiable set
of clauses but that a subset A of S is satisfiable. Then if we assign the elements of A
to L[1] , . . . , L[n] and start with p ~ n + 1, under certain conditions on the inference
rules being used we will still be computing that part of C I (S , < i n f e r e n c e r u l e s >)
that contMns the empty clause, although not the complete closure. The set A typically
contains the axioms for a domain, together with parts of the hypotheses of the theorem
being proved.

Associative operations Further optimizations are possible when the function f is a
binary operation and is associat ive . In this case the "Foreach" condition can use the
stronger restriction that il _< k. That is, in the generate step, the first element of the
tuple being considered must belong to the original input set S. This greatly reduces the
number of tuples (pairs, in this case) considered. This is illustrated in the case of the
semigroup problem, where the operation is associative by the definition of semigroup. If
we let x l , . . . , X k be the original set of generators, then a general product computed by
the algorithm is of the form (y l " . . . " y,.)(yT+I • . . . " y,), where Vj, 3i with yj = x~. Since
the operation is associative, this same product will also be computed as yl " (y2 " . . . • y~).
Hence we may safely restrict ourselves to the case in which the first element of the pair
is one of the original generators.

Another, more general, case arises when one is computing the closure of any relation
under the "composition" operation, which is associative. An example many are familiar

33

with~ is the ancestor relation. There are two ways to axiomatize the ancestor relation
generated from the parent relation:

(1) If parent(x,y) then ancestor(x,y)
If ancestor(x,y) and ancestor(y,z) then ancestor(x,z)

(2) If parent(x,y) then ancestor(x,y)
If parent(x,y) and ancestor(y,z) then ancestor(x,z)

Axiomatization ('1) may compute a specific ancestor relationship in fewer steps, but
(2) will compute all ancestors (the closure) much more efficiently. The optimization is
possible precisely because this is the computation of the composition operation on ordered
pairs, which is associative.

An even further optimization is possible when f is a binary operation which is commu-
tative. In that case we can impose the additional restriction in the "Foreach" condition
that il < i2.

T h e in f in i t e case The closure computation can be generalized even more than we have
stated. What it turns on is the very elementary fact of recursion theory that the closure
of a recursively enumerable set under a recursive function is recursively enumerable. It is
not necessary that the set of generators be finite; we might be given not a list of them but
just an algorithm for generating them. Nor is it necessary that the closure computation
should complete. A completely general form of the algorithm is given in Figure 2.

Initialize L[1] ~ xi
Initialize p ~ 1,q ~ 2, k ~ 2
While p < q do

Foreach (i l , . . . , i n) such that Vj, ij < p and 3j, ij = p
Compute f (L[i l] , . . . , L[i=])
If f (L[ix l , . . . , L[i~]) is new then

L[q] ~ f (L[i l] , . . . , L[i=])
q~---q+l

end if
end for
If xk exists then

L[q] ~ x~
k ~ - - k + l , q ~ - - q + l

end if
p ~ - - p + l

end while

Figure 2: Generalized Sequential Closure Algorithm

What we now claim is that (regardless of whether S is finite or not) L is an enumeration

34

of the closure of S under f . In the case that S is finite we can indeed simplify by putting
all the xl in at the start, as in Figure 1, but this is not generally possible.

3.3 The Parallel Algorithm

The most obvious way to parallelize the algorithm is to parallelize one of the loops. The
inner loop is relatively easy to parallelize but leads to a sequential bottleneck because
processes must wait for each other to complete and synchronize for the advancement of
the pointer p.

A better technique is to parallelize the outer "while" loop; that is, to consider several
values of p at once. The generate phase of the computation is not affected, since for
l = p , p + 1 , . . . , p + r < q, t h e / t h iteration of the loop is exactly the same, whether the
iterations are done sequentially or in parallel. The subsumption and update phases of the
computation, however, must be changed, to protect against simultaneous updating of L
and, more importantly, to ensure that a complete subsumption test is carried out before
updating. A straightforward way to do this would be for each process to lock L while
it performed the subsumption check and added newly generated unique elements to L.
However, this would create too much of a serial bottleneck, since the subsumption phase
of many closure computations is the most expensive. Our solution separates the tasks to
be carried out in order to allow" for greater parallelism.

To accomplish this, we make use of a separate list K indexed by a pointer r, which
holds elements that have been generated and passed an "almost complete" subsumption
test, but have not passed a final subsumption test. Carrying out the final check and
moving such elements from list K to list L is done separately. More formally, we break
the computation down into units of work as shown in Figure 3. It is possible to design
the data structures that index L for fast partial subsumption testing so that the generate
phase of Task A can go on concurrently with Task B.

Finally, we dispatch processes that are available for work as follows: When a process
requests work, we give it Task B if K is not empty and no other process is executing Task
B, otherwise we assign it Task A. Thus we typically have many instances of A in progress,
and (occasionally) at most one instance of Task B.

There are several observations to be made about this algorithm:

• It also computes the closure of S under f , by the same argument as in the sequential
c a s e .

• No duplicates are put in L, because updating of L is only done by Task B, of which
there is only one instance at a time.

• The algorithm retains most of the efficiency of the sequential algorithm, but not all.
It remains true that no tuples are considered twice, since each instance of Task A
uses a different value of s, so the total amount of work done in the generate phase
is the same in both cases. The final subsumption test will duplicate work done in
the partial subsumption test. Some of this duplication is reduced by the removal of

35

Initialize L[i] ~-- xi , for i = 1 , . . . , k
Initialize p ~-- 1, q *-- k + 1
Initialize K *-- e m p t y , r *-- 1

Task A:
Lock p, set s +- p, p +- p + 1, Unlock p
Foreaeh (i l , . . . , i ,~) such that Vj, ij < s and 3j, ij = s

Compute f(L[i~],..., L[i~])
If f(L[i~],..., L[in]) is new then

Lock K
K[r] *-- f (L [i l] , . . . , L[i~])
r e - r + l
Unlock K

end if
end for

Task B:
While r > 0

Lock K
a ~ K [r] , r ~ r - 1
Unlock K
If a is new then

L[q] ~ - a

q ~ q + l
end if

end while

(generate phase)
(partial subsumption phase)

(partial update phase)

(complete subsumption)
(complete update)

Figure 3: Parallel Closure Algorithm

$6

duplicates from K, but some of it is unavoidable. The reason this is not a severe
problem is that most subsumed elements are removed by the partial subsumption
check, and thus are not retested in Task B.

• The parallelism is of large grain size, since Task A contains not only generation of
new elements but also the bulk of the work of subsumption. The grain size can
be increased slightly (synchronization reduced) by batching within each process the
partial updates to K. We have not shown this in Figure 3 since it complicates the
presentation of the algorithm.

• Nearly all attempts to generate a new element fail. If the computation completes
with q = Q + 1, then Q= tuples will be considered, but only Q - k new elements
will be added. Assuming k negligibly small with respect to Q, we still have only
approximately 1 in every Q computations resulting in updates to L. Therefore Q
need only be on the order of 100 for the computation to be well worth parallelizing.

By the computation above the proportion of trials which actually result in any
updating of L is rather small. The proportion which result in updating K is usually
larger. The question of how much larger is crucial to any account of the efficiency
of the parallel algorithm. The serial bottleneck is avoided only if list K is at least
close to being emptied for the last time when the computation completes. In the
more general case of a closure computation which does not complete, or which is
terminated for reasons other than exhaustion, K should grow slowly in comparison
with L. Unfortunately, we have no firm theoretical results concerning the size of K,
but our experimental results indicate that in typical cases K remains small. Most
of the time, in fact, K is empty, and because elements from K do not have to be
reconstructed before their second comparison with L it can be emptied again fairly
quickly when it does become occupied. We present our speedup results as evidence of
the degree to which the serialization problem has been overcome. Although precise
results are hard to come by, we may at least note that in general the greater the final
value of q the better the algorithm will parallelize, while the more processes there
are adding to list K the greater will be the threat of a recurrence of serialization.

• Other parallel algorithms for parallelizing this type of computation have been pre-
sented, both of them based on message-passing rather than shared-memory models
of parallel computation. The difference is that synchronization among processes is
done by the sending and receiving of messages rather than by locks on shared data
structures, which are an inherently faster synchronization mechanism. One imple-
mentation of the semigroup computation was given in [1]. There speedups of close
to 3 were obtained with 4 processes. The message-passing model limited the number
of processes that were runnable because extra memory was required for duplicating
most of the data structures.

A more sophisticated message-passing theorem prover is presented in [4]. The tech-
nique used there provided speedups up to 23 with 29 processes on a very large
problem, but requires complex load-balancing decisions to be made ahead of time,
and seems to require a large problem to outweigh the overhead of message-passing.
The results we present in Section 4 lead us to hope that when the shared-memory

37

algorithm of Figure 3 is applied to a theorem prover, speedups will be good even on
small problems, and the load-balancing will be automatic, because of the shared-
memory model.

4 E x p e r i m e n t a l R e s u l t s

This algorithm has first been tested in the application areas described in Sections 2.4 and
2.5. The implementation was in C, using the Argonne monitor macro package described in
[5] to provide a portable and relatively high-level paradigm for writing the program. The
package provides a general dispatcher (the ASKFOR monitor) which was used to dispatch
tasks A and (one instance at a time of) task B to however many processes were started.
No particular process was dedicated to any particular task. The code was developed on
a Sequent Symmetry at the Automated Reasoning Project at the Australian National
University, and run on a larger Symmetry at Argonne National Laboratory. Results
obtained are shown in Tables 1 and 2.

processes time(seconds) speedup
1 1964.43 1.00
5 408.31 4.81

10 222.74 8.82
15 163.65 12.00
20 129.85 15.13

Table 1: Computation of Ackerman Constants

processes time(seconds) speedup
1 13597.26 1.00
5 2913.37 4.67

10 1612.07 8.43
15 1185.83 11.47
20 972.39 13.98

Table 2: Computation of Formulas of E_.

In each of these cases, an order of magnitude reduction in computing time was
achieved.

5 F u t u r e W o r k

The algorithm has so far been implemented and tested in special purpose programs for
computing the closures of particular sets under particular operations. The next step

38

is to implement a general-purpose theorem prover using this algorithm, incorporating
back demodulation and back subsumption. Not only will this provide a wider range of
applicability but we will be able to compare the speed of the parallel closure computation
using general methods with the special-purpose programs described here and with the
message-based parMlel closure algorithms. We have begun to construct such a theorem
prover, using OTTER[7] as a base, since it already contains many desirable features
unrelated to parallelism. The goal is to produce a parallel version of OTTER which
behaves identically with regard to input and output, but is capable of greatly increased
performance on parallel machines.

R e f e r e n c e s

[1] Butler, R. M., and N. T. Karonis, "Exploitation of Parallelism in Prototypical De-
duction Problems", Proceedings of the 9th International Conference on Automated
Deduction, E. L. Lusk and R. A. Overbeek, (Eds.) Springer-Verlag Lecture Notes in
Computer Science #310 (1987), pp. 333--343.

[2] Dunn, J. M., The Algebra of Intensional Logics, doctoral dissertation (unpublished),
University of Pittsburg, 1966.

[3] Dunn, J. M., "Relevance Logic and Entailment", Gabbay, D, & Gfinthner, F (eds),
Handbook of Philosophical Logic, Vol. 3, Dordrecht, Reidel, 1986.

[4] Jindat, A., R. Overbeek, and W. Kabat, "Exploitation of Parallel Processing for Im-
plementing High-Performance Deduction Systems", Journal of Automated Reasoning,
to appear.

[5] Boyle, J., Butler, R., Disz, T., Glickfeld, B., Lusk, E., Overbeek, R., Patterson, J.,
and Stevens, R., Portable Programs for Parallel Processors, New York, Holt, Rinehart
& Winston, 1987.

[6] Lusk, E. and McFadden, R., "Using Automated Reasoning Tools: A Study of the
Semigroup F2B2", Semigroup Forum 36, no. 1 (1987), pp. 75-88.

[7] McCune, W. W., "OTTER 1.0 Users' Guide", Report ANL-88-44, Argonne National
Laboratory, Argonne, Illinois.

[8] Meyer, R. K., "Sentential Constants in R and R'", Studia Logica 45 (1986), pp. 301-
327.

[9] Slaney, J. K., "3088 Varieties: A Solution to the Ackermann Constant Problem",
Journal of Symbolic Logic 50 (1984), pp. 487-501.

[10] Slaney, J. K., "On the Structure of DeMorgan Monoids, With Corollaries on Relevant
Logic and Theories", Notre Dame Journal of Formal Logic 30 (1989), pp. 117-129.

[11] Slaney, J. K., "The Ackermann Constant Theorem: A Computer-Assisted Investiga-
tion", Journal of Automated Reasoning, forthcoming.

39

[12] Wos, L., D. Carson, and G. Robinson, "Efficiency and completeness of the set-of-
support strategy in theorem proving," Journal of the ACM 14, (1965), pp. 536-541.

